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Background: Early detection of pediatric severe sepsis is necessary in order to optimize

effective treatment, and new methods are needed to facilitate this early detection.

Objective: Can a machine-learning based prediction algorithm using electronic

healthcare record (EHR) data predict severe sepsis onset in pediatric populations?

Methods: EHR data were collected from a retrospective set of de-identified pediatric

inpatient and emergency encounters for patients between 2–17 years of age, drawn from

the University of California San Francisco (UCSF) Medical Center, with encounter dates

between June 2011 and March 2016.

Results: Pediatric patients (n = 9,486) were identified and 101 (1.06%) were labeled

with severe sepsis following the pediatric severe sepsis definition of Goldstein et al.

(1). In 4-fold cross-validation evaluations, the machine learning algorithm achieved

an AUROC of 0.916 for discrimination between severe sepsis and control pediatric

patients at the time of onset and AUROC of 0.718 at 4 h before onset. The prediction

algorithm significantly outperformed the Pediatric Logistic Organ Dysfunction score

(PELOD-2) (p < 0.05) and pediatric Systemic Inflammatory Response Syndrome (SIRS)

(p < 0.05) in the prediction of severe sepsis 4 h before onset using cross-validation and

pairwise t-tests.

Conclusion: This machine learning algorithm has the potential to deliver

high-performance severe sepsis detection and prediction through automated monitoring

of EHR data for pediatric inpatients, which may enable earlier sepsis recognition

and treatment initiation.

Keywords: pediatric severe sepsis, prediction, machine learning, electronic health records, early detection

INTRODUCTION

Sepsis is a high-impact condition that affects both adults and children. In 2001, the total burden of
sepsis-spectrum syndromes in the United States was estimated at $16.7 billion and 215,000 deaths
annually (2). In 2007, themean, per-hospitalization cost of severe sepsis was estimated to be $47,126
(3), and a recent study assessed that sepsis is responsible for as many as 5.3 million deaths per year
globally (4). Pediatric sepsis in particular causes over 6,500 deaths annually in the United States,
with an estimated $4.8 billion burden of care, at approximately $64,280 per hospitalization (5).
Moreover, survivors can suffer both short-term (6) and long-lasting impacts (7). Relative to that
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of adult sepsis, the literature of pediatric sepsis is less
developed (8). This includes consensus definitions of pediatric
sepsis (1, 9, 10), which may not match clinicians’ diagnoses in
practice (11).

As is true for adult sepsis (12, 13), many studies show that
early and aggressive treatment of pediatric sepsis with antibiotics
and fluid resuscitation correlates with better outcomes (14–19).
Traditionally, generalized disease severity scoring systems have
been used for sepsis detection; however, these lack specificity for
pediatric sepsis. For example, while the Systemic Inflammatory
Response Syndrome (SIRS) criteria have been adapted for
pediatric patients and incorporated into current pediatric
sepsis definitions (1), they are intended to assess inflammatory
responses from both infection and other causes of systemic
inflammation, resulting in criteria that are sensitive but not
specific for sepsis. In some cases, scoring systems for non-specific
pediatric disease severity or mortality are applied to the task of
recognizing pediatric sepsis, such as the Pediatric Logistic Organ
Dysfunction score (PELOD-2) (20, 21). PELOD-2 is a continuous
scale that allows assessment of the severity of cases of MODS
in the PICU and which includes 10 variables (Glasgow Coma
Score, pupillary reaction, lactatemia, mean arterial pressure,
creatinine, PaO2/FiO2 ratio, PaCO2, ventilation,WBC count, and
platelet count), involving five organ dysfunctions (neurologic,
cardiovascular, renal, respiratory, and hematologic) (20).

In the absence of specialized pediatric sepsis scores, some
hospitals have implemented home-grown computerized sepsis
prediction systems, which may benefit from site specificity (22).
Computerized prediction systems offer a compelling alternative
to manual application of generalized scoring systems. Such
systems may access electronic health record (EHR) data for
clinical decision support. These systems have the potential to
identify septic patients who might otherwise have a delay in
diagnosis or be missed entirely, and could provide early warning
of sepsis for hospitalized pediatric patients on hospital wards
or in intensive care. Studies in adults show that the setting of
hospital-acquired sepsis among inpatients is both distinct and
substantially more deadly (23–25), and children with hospital-
acquired sepsis have higher risk of delayed sepsis care than those
presenting to an emergency department (18).

Machine-learning (ML)-based approaches have the potential
for increased sensitivity and specificity by training on sepsis
patient data (26–28), and can be easily customized using site-
or population-specific data, resulting in improved performance
relative to generic scoring systems (29–31). While ML-based
systems have been applied to prediction of sepsis in neonatal
patients, conditioned on the availability of real-time waveform
data (32, 33) or extensive sets of laboratory and historical
data (34), they have not previously been applied to EHR-
based prediction for the older pediatric inpatient population.
If successful, such predictors could provide easily-accessible,

Abbreviations: AUROC, area under the receiver operating characteristic; CV,

cross-validation; DOR, diagnostic odds ratio; HER, electronic health record; ICD-

9, international classification of diseases, 9th revision; IQR, interquartile range;

ML, machine learning; MLA, machine learning algorithm; PELOD, pediatric

logistic organ dysfunction score; ROC, receiver operating characteristic; SE,

standard error; SIRS, systemic inflammatory response syndrome; UCSF, University

of California San Francisco.

site-customized early and accurate sepsis warning for pediatric
patients. In the experiments discussed below, our objective was
to create and demonstrate a customized, high-performance ML-
based prediction tool for pediatric severe sepsis.

METHODS

Data Set
In these experiments, we used de-identified chart data from
pediatric (ages 2–17 years) inpatient and emergency encounters
at the University of California San Francisco (UCSF) Medical
Center, from June 2011 toMarch 2016, inclusive (35). See Table 1
for additional details on data inputs. Neonates and infants under
the age of 2 years have immature adaptive and innate immune
responses (36), and require separate analysis beyond the scope
of this work. The original UCSF data collection did not impact
patient safety, as all data were de-identified in accordance with
theHealth Insurance Portability andAccountability Act (HIPAA)
Privacy Rule prior to commencement of this study and no
individual patient data were linked prior to being de-identified.
Hence, this study constitutes non-human subjects research which
does not require Institutional Review Board approval.

Encounters were removed if the recorded patient age was
<2 or more than 17 years (1). In addition, encounters were
removed if they were missing any of the required measurements
(patient age, diastolic and systolic blood pressures, heart rate,
temperature, respiration rate, and peripheral oxygen saturation)
to be used in training and prediction; while supplemental
measurements (GlasgowComa Score, white blood cell count, and
platelet count) were passed to the training and testing routines,
their presence was not required. From 11,619 encounters
with appropriate ages, 9,715 remained after checking for the
required measurements. As a final step, encounters with severe
sepsis onset too early in the stay (<6 h after the start of the
patient record) were removed (see Experimental Procedures).
After removing encounters for these onset times, a total of
9,486 encounters remained for training and testing. Of these
examples, 101 (1.06%) were determined to have severe sepsis (see
Gold Standard).

Data Processing and Screening
The UCSF EHR data were organized into a SQL database and
custom queries were used to extract the vital sign, lab report, and
other data used in our experiments. These patient records were

TABLE 1 | Predictor variables used in this study.

Demographics Age

Vital signs Heart rate

Respiratory rate

Peripheral oxygen saturation (SpO2)

Temperature

Systolic blood pressure

Diastolic blood pressure

Other clinical variables

(not required for

inclusion)

Glasgow Coma Scale (GCS)

White Blood Cell (WBC) count

Platelet count
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prepared by Dascena’s proprietary software to provide examples
for training and prediction. For encounters meeting the inclusion
criteria, observations of vital signs were binned by the hour and
simple carry-forward imputation was used when no observation
was available for a given hour. Based on these time series data,
we constructed a variety of derived features (e.g., approximate
Mean Arterial Pressure constructed as a linear combination of
systolic and diastolic blood pressures) and calculated the sepsis
gold standard for training (see Supplementary Tables 1, 2).

Gold Standard
The gold standard follows the pediatric severe sepsis definition of
Goldstein et al. (1), wherein severe sepsis requires:

• SIRS score of ≥ 2, where at least one of temperature or white
blood cell count is abnormal;

• Suspicion of infection, operationalized here as the presence of
an International Classification of Diseases (ICD-9) code for
septicemia, sepsis, severe sepsis, or septic shock, which might
be attached at any time during the encounter (given that the
patient meets the SIRS criteria above, this is “sepsis” under the
Goldstein criteria); and

• Organ dysfunction.

Under the Goldstein criteria, septic shock is further defined by
when the above conditions are met and there is cardiovascular
organ dysfunction. Pediatric SIRS criteria, the gold standard,
and the organ dysfunction criteria (part of the gold standard)
are presented in Supplementary Tables 1–3, respectively.
Supplementary Table 4 contains a list of ICD-9 codes used for
“suspicion of infection.”

The Goldstein criteria was chosen for use as the gold standard
as opposed to Sepsis-3 criteria because Sepsis-3 criteria are
based on a patient’s Sequential Organ Failure Assessment (SOFA)
Score, a severity score which lacks sufficient evidence for use in
pediatrics (1, 37, 38). In addition, Sepsis-3 criteria identifies those
patients with sepsis and septic shock, which reflect respective
mortality rates of 10 and 35% (38). Because mortality rates
have been widely reported in the literature to be different in
pediatric sepsis as opposed to adult sepsis (5, 36, 39), these
rates are not applicable to pediatric populations. Use of Sepsis-3
criteria would preclude direct applicability of our intervention to
pediatric patients, including different cognitive, developmental,
and disease stages that present in cases of pediatric sepsis as
compared to adult sepsis (36).

The gold standard was implemented by electronic chart
abstraction, combining data entered into the EHR throughout
the encounter with ICD-9 codes. All of these criteria follow
Goldstein et al. (1), with modifications necessary for application
to the UCSF pediatric data set. These necessary modifications
include those allowing for binary white blood cell count (normal
vs. abnormal), lack of radiological information, and lack of
patient history. Without information on physician intention and
examination observations, fluid administration in the presence of
low blood pressure was assumed to be an attempt to resuscitate,
and the following sections of the Goldstein cardiovascular
dysfunction definitions were modified: it was not possible to

assign causal attribution for fluid-refractory hypotension, and
exam components (core-to-peripheral temperature gap and
delayed capillary refill) could not be determined retrospectively.
Radiological (bilateral infiltrates) and history components (acute
onset and no evidence of left heart failure) were unavailable (see
Supplementary Tables for details of implemented criteria).

Sepsis onset was defined as the time when the patient first met
the SIRS criteria (if a sepsis-related ICD-9 code is present). Severe
sepsis onset was defined as the first time the organ dysfunction
criteria was met in a patient who, at some point in their stay,
met the SIRS criteria and had a sepsis-related ICD-9 code (is
“septic” under our gold standard). Note that this means that
our retrospective definition may determine that a patient has
“severe sepsis” before they meet the surveillance criteria for
being “septic.” For example, if laboratory data fulfilling organ
dysfunction definitions was present prior to fever and tachypnea
being recorded in vital sign flowsheets, the patient would be
labeled with severe sepsis. This feature was deemed necessary
both to reflect the clinical process and to avoid difficulties
surrounding noisy satisfaction of the thresholds.

Modeling
All learning conducted in this work was done using boosted
ensembles of decision trees (40, 41). Ensemble classifiers combine
the output from many “weak” learners, each of which would be
insufficient to solve the desired learning problem on its own,
creating a strong learner. Each of these weak base learners
is a decision tree, constructed by repeatedly and recursively
partitioning the feature space, finding thresholds within the
features which most optimally decrease entropy, and thus
increase information, within the resulting classification groups
The appropriate set of branching checks is performed for each
tree within the final classifier, traveling along the tree structure
until a leaf node (and corresponding risk score) are reached. The
risk scores from the individual trees are then aggregated to assign
an overall risk score.

Our classifiers were trained on a set of features that included
patient age, diastolic and systolic blood pressures, heart rate,
temperature, respiration rate, and peripheral oxygen saturation
(SpO2) (Table 1). As noted above, encounters had to have all of
these measurements at some point during their stay to qualify
for inclusion in the analyses. Additionally, the values of Glasgow
Coma Score, white blood cell count, and platelet count were used
if available. The final feature vectors were organized, along with
their gold standard labels, into arrays to be passed to the training
and prediction routines.

Experimental Procedures
We compared the performance of the algorithmic sepsis
predictor with that of the concurrent, running values of the
PELOD-2 and pediatric SIRS scores. These experiments used
all patients of at least 2 and ≤17 years of age in the data
set, treated as one aggregate population. This population was
split into four approximately equal-sized “folds” (sets) for 4-
fold cross-validation (CV) (41). The CV procedure allows the
estimation of generalization performance and its variability, as

Frontiers in Pediatrics | www.frontiersin.org 3 October 2019 | Volume 7 | Article 413

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Le et al. Pediatric Sepsis Prediction

well as comparison of this performance with the PELOD-2
and SIRS scores, calculated hourly. Due to the original data
set’s encoding of laboratory values as only normal/abnormal,
the affected subscores of PELOD-2 were approximated with 1
point for abnormal and 0 points for normal. We computed a
variety of metrics on the performance of the resulting classifiers
(and the PELOD-2 and SIRS scores) on the test folds. We
determined statistical significance using one-tailed paired t-
tests, where each pair constituted the AUROC performance
of two different classification methods, measured on the same
test fold. This paired t-test has a sample size of 4, as we
are comparing 4 AUROC performances, paired by test set
on which they were evaluated The p-value threshold for
significance was fixed at 0.05 for all comparisons. We repeated
these experiments for pre-onset offsets of 0, 1, 2, 3, and 4 h,
examining our system’s ability to learn pre-onset patterns in
septic patients.

RESULTS

The demographic characteristics, inclusion flowchart, and
feature importance of the data set are presented in Table 2,
Supplementary Figures 1, 2, respectively. The overall prevalence
of severe sepsis in this pediatric population (aged 2–17, inclusive)
was 1.06% (47.52% male and 52.48% female). Among patients
with severe sepsis, 72.94% were above the age of 5 years.

We evaluated predictive performance of the ML-based
predictor by training and testing at hourly intervals from sepsis
onset and through 4 h before onset. Figures 1A,B show the
performance of the algorithm at onset and 4 h before onset
in terms of Receiver Operating Characteristic (ROC) curves,
which show the tradeoff between sensitivity (the fraction of
severe sepsis patients that were classified as severe sepsis) and
specificity (the fraction of severe sepsis-negative patients that
were classified as severe sepsis). The ML-based predictor’s ROC
curve is improved over the PELOD-2 and SIRS curves, and has a

larger area under the curve (i.e., larger AUROC), which indicates
increased accuracy.

Figure 2 shows how cross-validation fold-averaged AUROC
varies as a function of prediction horizon in hours for each
prediction system. These comparisons are statistically significant
(p < 0.05, one-tailed pairwise t-test) for 1 and 4 h pre-onset
(PELOD-2) and 0, 1, and 4 h pre-onset (SIRS).

Table 3 presents a set of detailed performance metrics for
the algorithm, SIRS, and PELOD-2. Apart from AUROC, these
performance metrics are a function of a chosen operating point
(i.e., a point on the ROC curve where the sensitivity was the
largest possible value ≤0.80). The diagnostic odds ratio (DOR),

TABLE 2 | Demographic information of pediatric inpatients at UCSF from June

2011 to March 2016, inclusive.

Characteristic Overall Severe sepsis

Count Percent (%) Count Percent (%)

Gender Female 4,706 49.61 48 47.52

Male 4,780 50.39 53 52.48

Age

Overall: Median

10, IQR (5–14)

Severe sepsis:

Median 9,

IQR (4–14)

2–5 2,567 27.06 29 28.71

6–12 3,476 36.64 34 33.66

13–17 3,443 36.30 38 37.62

Length of stay

(days)

Overall: Median 2,

IQR (1–5)

Severe sepsis:

Median 9,

IQR (5–16)

0–2 5,021 52.93 15 14.85

3–5 2,412 25.43 12 11.88

6–8 849 8.95 21 20.79

9–11 420 4.43 17 16.83

12+ 784 8.27 36 35.64

In-hospital death Yes 47 0.50 7 6.93

No 9,439 99.50 94 93.07

FIGURE 1 | (A) ROC curves (averaged across the four test folds) for the machine learning algorithm (MLA), PELOD-2, and SIRS at time of onset. (B) ROC curves

(averaged across the four test folds) for the MLA, PELOD-2, and SIRS at 4 h pre-onset.
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a global measure for comparing diagnostic accuracy between
diagnostic tools, is represented here as the ratio of the odds of a
true positive prediction of severe sepsis in patients who developed
severe sepsis relative to the odds of a false positive prediction of
severe sepsis in patients who did not develop severe sepsis. The
DOR is highest for the MLA predictor (vs. PELOD-2 and SIRS)
at onset and 4 h pre-onset.

DISCUSSION

These experiments demonstrate that the ML-based sepsis
prediction system can predict severe sepsis onset with AUROC
performance superior to that of existing pediatric organ
dysfunction and inflammatory response scoring systems
(Table 2, Figures 1, 2). These comparisons were statistically
significant vs. PELOD-2 (organ dysfunction) at 1 and 4 h
pre-onset and vs. SIRS at 0, 1, and 4 h pre-onset. This superiority
is also visible in other metrics. Early and accurate recognition

FIGURE 2 | Average AUROC over a prediction horizon. These AUROC

differences are statistically significant for the machine learning algorithm (MLA)

vs. PELOD-2 at all hours pre-onset (p < 0.05) and vs. SIRS at all hours

pre-onset (p < 0.05) with the exception of the 0 h comparison. This

non-significant comparison against SIRS at 0 h pre-onset had a p-value of

0.0977.

of pediatric sepsis is essential, particularly in high-risk inpatient
populations, as this could lead to earlier treatment initiation
and potentially improve patient outcomes. Effective methods
to improve pediatric sepsis recognition are lacking and
have been called for as part of national pediatric sepsis
improvement collaboratives.

This study contributes to the ongoing body of literature
on the use of machine learning for the prediction of sepsis
(42–44). Komorowski et al. (42) developed the AI Clinician, a
reinforcement learningmodel, and retrospective results indicated
that patients who received treatments similar to those the model
recommended had the lowest mortality (42). The AI Clinician
was developed with a variety of data inputs, some of which have
limited EHR availability or would not have been immediately
available to the clinician at the time of treatment. It provides
useful treatment recommendations when no gold standard for
treatment exists, which is a significant current need in the
US healthcare delivery landscape. However, while Komorowski
et al. derived some insight into the tool’s interpretability by
estimating relative importance of model parameters, CDS tools
that recommend treatment plans must also provide clinicians
with transparency along with treatment recommendations, such
that clinicians can easily and efficiently interpret the basis for
those recommendations (42, 43). Nemati et al. (44) developed
the Artificial Intelligence Sepsis Expert algorithm, a sepsis
prediction model derived from a combination of electronic
medical record (EMR) and high-frequency physiologic data
(44). Retrospective results indicated that the model could
accurately predict the onset of sepsis in an ICU patient 4–
12 h prior to clinical recognition (44). These studies represent
important contributions to the field of machine learning
and its application to sepsis identification and prediction.
However, to the best of our knowledge, none of these existing
machine-learning based systems provide early warning for the
complex, heterogeneous pediatric sepsis inpatient population,
which can present very differently than adult sepsis due to
the wide ranges of physiological baseline states (1) and sepsis
manifestations in pediatric patients (45), their “tremendous
physiological reserve,” (46) which tends to mask early symptoms,
and the difficulties posed by numerous comorbidities and
treatments (47). Therefore, there remains a significant clinical
need for a sensitive and specific EHR-based pediatric sepsis
prediction system.

TABLE 3 | Performance metrics for the machine learning algorithm and pediatric scoring systems.

MLA (onset)

mean (SE)

PELOD-2 (onset)

mean (SE)

SIRS (onset)

mean (SE)

MLA

(4 h pre-onset)

PELOD-2

(4 h pre-onset)

SIRS

(4 h pre-onset)

mean (SE) mean (SE) mean (SE)

AUROC 0.916 ± (0.053) 0.622 ± (0.093) 0.900 ± (0.029) 0.718 ± (0.182) 0.482 ± (0.082) 0.396 ± (0.051)

Sensitivity 0.750 ± (0.000) 0.805 ± (0.078) 0.775 ± (0.157) 0.750 ± (0.167) 0.707 ± (0.089) 0.067 ± (0.141)

Specificity 0.940 ± (0.049) 0.383 ± (0.064) 0.861 ± (0.067) 0.700 ± (0.180) 0.351 ± (0.043) 0.740 ± (0.013)

DOR 64.438 ± (70.499) 3.023 ± (1.548) 28.112 ± (30.507) 8.384 ± (6.104) 1.454 ± (0.607) 0.271 ± (0.573)

For each metric and each time (onset or 4 h pre-onset), the best result is bolded. This procedure chose an operating point from the ROC curve where the sensitivity was the largest

possible value ≤0.80; the selected PELOD-2 and SIRS sensitivity values for 4 h pre-onset prediction were considerably below this value, allowing them to obtain favorable tradeoffs in

some of the other metrics. MLA is machine learning algorithm. SE is the standard error and DOR is the diagnostic odds ratio.
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The ML-based system analyzed in this study can be a useful
means of continually assessing pediatric patients’ likelihood
of developing severe sepsis through automatic monitoring of
the patient EHR. This clinical problem represents a significant
opportunity for clinical decision support, as it is critical
to both provide monitoring for this particularly vulnerable
population and avoid excessive numbers of false alarms.
Our machine learning algorithm outperforms the PELOD-
2 and pediatric SIRS scoring systems, indicating that it
has the potential to deliver these essential improvements.
While neither PELOD-2 or SIRS are primarily intended for
sepsis prediction, they provide a practical baseline for this
retrospective study. Further, the UCSF dataset used in this
study is a collection of encounters from many hospital
wards with varying measurement frequencies and data types,
and information is compiled with unique patient identifiers,
meaning that measurement types remain consistent across
patient encounters. Measurement of vital signs therefore
followed similar approaches among the cohort of patients
analyzed in this study, which strengthens the generalizability of
experimental results.

The gold standard is a possible limitation in the present
analysis. First, chart review would provide a superior gold
standard, but it is not practical at scale, requiring the present
use of our surveillance-type gold standard. Second, by limiting
“suspicion of infection” to those who have ICD-9 codes for
sepsis-spectrum syndromes, we prevent the gold standard from
positively labeling encounters not acknowledged as being on
this spectrum; this could mean that this gold standard is
under-reporting sepsis prevalence. Further, Weiss et al. (11)
compared the clinical diagnoses of severe sepsis by attending
physicians with the result of the application of the Goldstein
consensus definitions and found that the agreement between
the two was only moderate (Cohen’s χ , 0.57 ± 0.02, mean
± SE). The current analysis uses only ICD-9 codes and does
not use ICD-10 codes, while the study period includes the
roll-out of the ICD-10-CM coding system on October 1, 2015
(48). However, ICD-9 codes for sepsis appear with a similar
frequency both before and after the roll-out date. Finally, while
the gold standard provides a particular onset time based on
vital signs and laboratory data, it is difficult to assess how this
relates to when severe sepsis onset would be recognized by an
attending clinician. There could be additional delays to clinician
recognition of the change in physiology and further delays to
necessary interventions.

The characteristics of the UCSF pediatric inpatient population
may limit generalizability; these data are from a tertiary
care center with a heavy representation of organ transplant
patients. This population also has a low prevalence of hospital-
acquired severe sepsis (<1%), limiting the power of the
statistical analyses. Although pediatric severe sepsis in children’s
hospital PICUs has occurred with increasing prevalence and
with increasing associated comorbidities, resource burden, and
mortality in recent years (49), generalizability may be limited
when applying the methodology used in this study to “sepsis”
diagnostic criteria instead of to “severe sepsis” criteria. Despite

these limitations, these data provide proof-of-principle that
machine learning can identify and predict pediatric sepsis, and
could be adapted with increased performance at each center
to have better site specificity for each hospital’s particular
patient population.

Because of the retrospective nature of this work, the dataset
was not initially collected with the purpose of machine learning
on a cohort of children at risk for sepsis. For future, more
complex work in pediatric sepsis prediction viamachine learning,
an important requirement is obtaining diverse and large data
sets. It should be noted that, while pediatric sepsis is generally
rare, even secondary-care contexts could benefit from being
able to accurately identify early the few cases that do appear,
particularly if such capabilities could be integrated into a larger
data collection and prediction system, as they can with this
predictive algorithm.

In summary, the ML-based sepsis prediction system
examined in these experiments outperforms traditional, tabular
scoring systems and demonstrates superior performance
in predicting pediatric severe sepsis onset. The improved
ROC performance offers clinicians and hospitals a variety
of useful operating points to suit their sepsis alerting needs.
The ROC performance also offers the promise of using
the numerical score produced by this algorithm for severe
sepsis risk stratification. Using these tools, clinicians will
be better able to allocate finite clinical resources, identify
pediatric patients before their condition deteriorates, and avoid
adverse outcomes.
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